

Predictive Maintenance using Elastic Machine Learning

Search. Observe. Protect.

May 3rd, 2021

Felix Rössel
Principal Solutions Architect

Q Agenda

Intro predictive analytics

Real-time analytics and ML capabilities

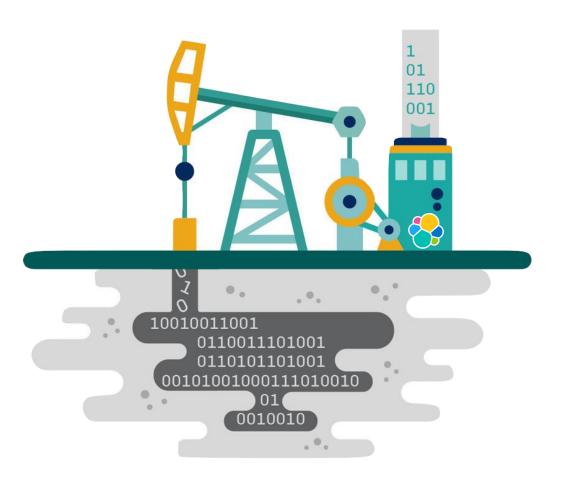
Demo

Real world example

Q & A

Intro predictive analytics

World's new most valuable resource

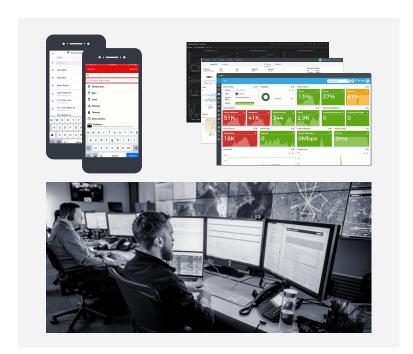


The Need for Relevant Real-Time Insights

Users are demanding more of applications.

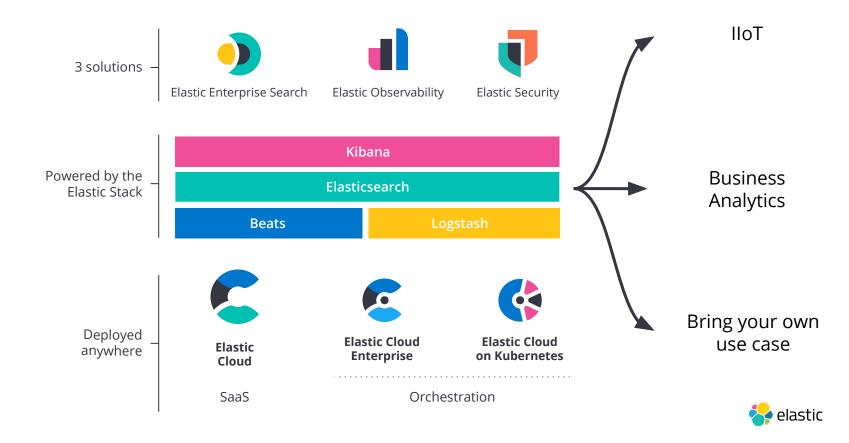
Enterprise IT environments are becoming increasingly complex.

Digital threats are targeting any weakness in an evolving attack surface.



Business leaders are now, <u>more than ever before</u>, focused on using data to improve their business.

Elastic Technology



3 Steps of Optimizing your data use with Elastic Stack

Step 1: Storage

Easy Integrations

Raw Data Processing

Enrichment

Granular level Security

Compliance (SOC2, CSA STAR, ISO/IEC 27001, ISO/IEC 27018, ISO IEC 27017, HIPAA, FeDRAMP)

Step 2: Processing

Fast, Scalable, and Relevant

Real-Time Aggregation

Data Lifecycle Management

Dynamic Visualisations

Step 3: Automation

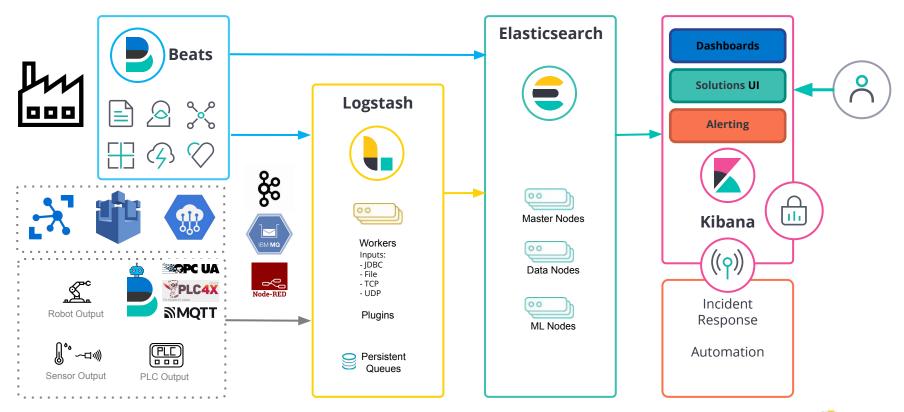
Automation

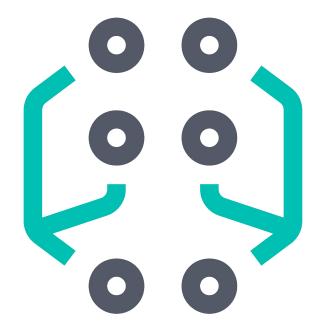
Machine Learning Driven Analysis

- Anomaly detection
- Population Analysis
- Classification
- Prediction
- Forecasting

Real-Time Alerting

Single Stack Architecture



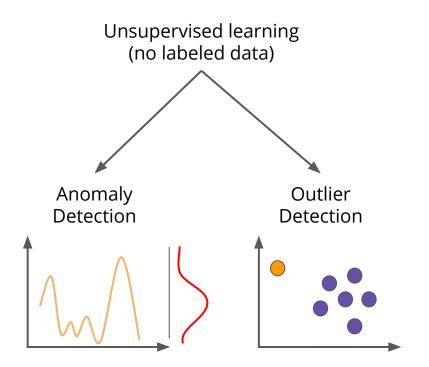


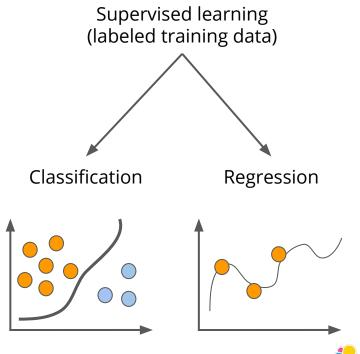
Elastic Machine Learning

Operationalize data science for everyone

Elastic Machine Learning

A tour of the Elastic ML stack





How to benefit from Elastic ML

Anomaly detection

- Is there any uncommon problem in my production process?
- What about the current traffic situation? Anything exceptional?
- Is there suspicious activity in my network environment?

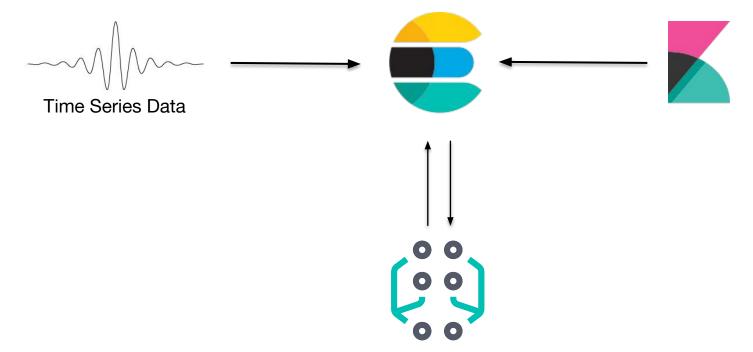
Classification

- Does a train / car / truck / machine / robot needs maintenance?
- Does a device works correctly?

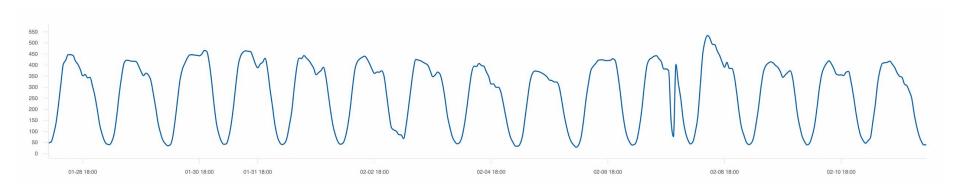
Outlier detection

- What are the products with the biggest change of being unusable based on production sensor data?
- Do we have cheater / fraudster in our system?

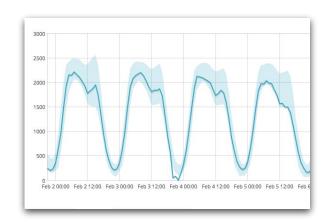
Elastic Machine Learning Flow for anomaly detection

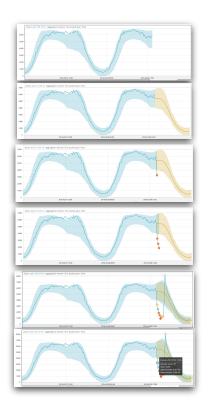


Let's build a model for anomaly detection



What kinds of patterns can we find in time series data?





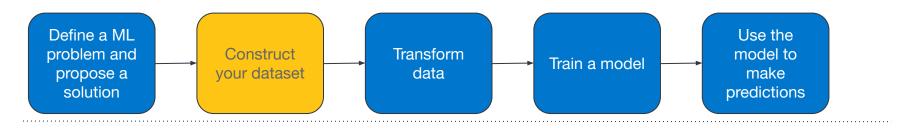
Learn

Predict

Operationalize

ML Data Frame Analytics | Predict customer churn

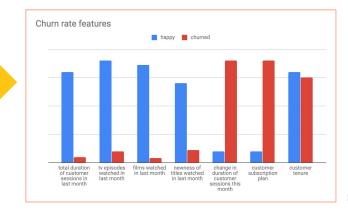
End to end methodology



raw logs

{ "customer_id": "028fa21e", "session_id": "MA016PC5", "@timestamp": "2019-05-08T18:46:22", "request_type": "streaming_tv", "channel": "bbc", "title": "Line of Duty" } { "customer_id": "a4ca7c7c", "session_id": "LMSXQXHq", "@timestamp": "2019-05-08T18:49:34", "request_type": "streaming_film", "channel": "ziggo", "title": "Glass" } { "customer_id": "avad97s3", "session_id": "LMSXQXHq", "@timestamp": "2019-05-08T18:50:34", "request_type": "streaming_film", "channel": "ziggo", "title": "Glass" } { "customer_id": "dce909a0", "session_id": "MA016PC5", "@timestamp": "2019-05-08T18:51:23", "request_type": "streaming_film", "channel": "ziggo", "title": "Glass" { "customer_id": "vfva09a09", "session_id": "LMSXQXHq", "@timestamp": "2019-05-08T18:52:14", "request_type": "streaming_film", "channel": "ziqqo", "title": "Glass" } { "customer_id": "sdfd9s90", "session_id": "MA016PC5", "@timestamp": "2019-05-08T18:54:51", "request_type": "streaming_film", "channel": "ziggo", "title": "Glass" }

aggregated data



Machine Learning end-to-end methodology

Transform raw data to a feature index

RAW Data

```
{
  "customer_id": "028fa21e",
  "session_id": "MA016PC5",
  "@timestamp": "2019-05-08T18:46:22",
  "request_type": "streaming_tv",
  "channel": "bbc",
  "title": "Line of Duty"
},
{
  "customer_id": "a4ca7c7c",
  "session_id": "LMSXQXHg",
  "@timestamp": "2019-05-08T18:49:34",
  "request_type": "streaming_film",
  "channel": "ziggo",
  "title": "Glass"
},
...
```

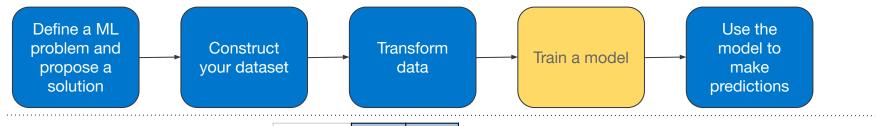
```
PUT _transform/customer_behaviour
{
    "source": {
        "index": ["viewing_logs"]
},
    "description": "Pivot viewing logs to customer-centric index",
    "dest": {"index": "customer_behaviour"},
    "pivot": {
        "group_by": {
            "customer_id": {"terms":{"field": "customer_id"}
        }
    },
    "aggregations": {
        "total_tv_shows": {...},
        "total_films": {...},
     }
}
```

Customer Index

```
{
    "customer_id": "028fa21e",
    "total_tv_shows": 10,
    "total_films": 2,
    "total_watching_duration": 72123,
    "last_active": "019-05-08T18:46:22",
    ...
},
{
    "customer_id": "a4ca7c7c",
    "total_tv_shows": 23,
    "total_films": 8,
    "total_watching_duration": 184212,
    "last_active": "2019-05-08T18:49:34",
    ...
},
...
```


Machine Learning end-to-end methodology

Build a model on historical data that has a churn indicator

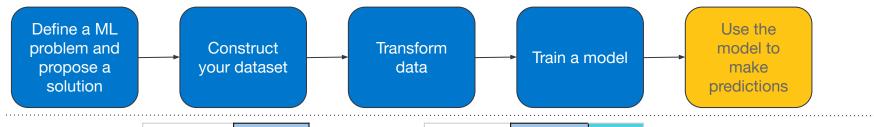


train/validate/test

	customer a	customer b	
total duration of customer sessions	80:21:07	1:01:11	
tv episodes watched	24	1	
films watched in last month	5	0	
newness of titles watched in last month	9.8	1.2	ML
Change in duration	6:22:17	16:43:29	Supervised Model
subscription plan	gold	platinum	Model Name: churn_e2r2 Model Precision: 96.3% Model Recall: 95.7%
customer tenure	32	26	Model F1 score: 96.0%
has churned?	no	yes	

Machine Learning end-to-end methodology

Use model inference to make predictions on streaming data



predict

Real world example

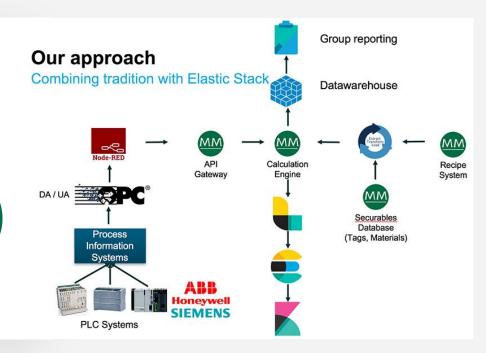
Powering the Search for Real-Time Costing

"Being a market leader means being a tech leader. Our ability to quickly detect deviations in the manufacturing process and adjust on the fly is a competitive advantage."

KARTON AG

Jürgen Kerner

Head of Operations, Corporate IT at Mayr-Melnhof Karton



Thank You

Elastic is a Search Company. www.elastic.co

